Glass Packaging for G-Band Applications

Madhavan Swaminathan, Penn State Univ.

www.chimes.psu.edu

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ECTC Panel May 28, 2024

Electromagnetic Spectrum & Path Loss

Courtesy: IEEE AP Magazine, Vol. 57, No. 1, Feb. 2015

Marco Giordani, Michele Polese, Marco Mezzavilla, Sundeep Rangan, and Michele Zorzi, "Towards 6G Networks: Use Cases and Technologies", IEEE Communications Magazine 2020

□ Path Loss, absorption loss, need to be compensated using antenna & RF circuitry!

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ECTC Panel May 28, 2024

Available Technologies

Key Parameter	LTCC	Laminate (LCP)	Si Interposer	Glass
Dk (ϵ_r)	7.3 - 9.8	3.17	11.7	3.7 - 21
Df $(tan(\delta))$	0.0007	0.006 @ 140 GHz	0.004 @ 35 GHz	0.008 @ 100 GHz
Surface Roughness (nm)	120	350	<60	<10
CTE (ppm/K)	6.7	18(x & y) 200 (z)	2.3-3.3	3 - 12
Young's Modulus (GPa)	90-150	3.4 -4.0	168.9	50 - 90
Moisture absorption	0	0.04%	0	0
Thermal Conductivity (W/mK)	> 3	0.9	148	1.1
Large Panel Processing	No	Yes	No	Yes
Cost	Very high	Low	High	Moderate
Min. Feature Size (μm)	100	10	1	1
Component Density	Low	Medium	Very high	Very high

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

ECTC Panel May 28, 2024

CHIMES Center for Heterogeneous Integration of Micro Electronic Systems

Design Challenges

of Micro Electronic Systems

Emerging Solution – Glass Packaging

RF Packaging for Communication and Sensing Applications above 100 GHz – Technologies, Design Challenges and Emerging Solutions

Fraunhofer

IZM

RF Packages with Integrated Antennas above 100 GHz Uwe Maaß

Outline

- **Motivation Challenges for 100GHz+ Packaging**
- State of the Art for D-band Antenna-in-Package (AiP) Solutions
- Fraunhofer IZM Embedding-based AiP Solutions
- Example: Fraunhofer IZM's Embedding-based AiP Solution using FoWLP for 6G

100GHz+ Packaging Design Challenges

Challenges

THz signals suffer from very high free space path loss

Frequency	3.5 GHz (n78)	39 GHz (n260)	140 GHz	300 GHz	
Free Space Path Loss (300 m)	93 dB	114 dB (+ 21 dB)	125 dB (+ 32 dB)	132 dB (+ 39 dB)	

Additional losses due to a) atmospheric effects (e.g., rain) and b) blockage (e.g., from buildings)

Possible Solutions

Sub-THz + (massive) MIMO = Sub-THz (massive) MIMO

Antenna-in-Package (AiP) solutions required for hardware implementation of Sub-THz (massive) MIMO

D-Band AiP Solutions – 1/2

S. Shahramian, M. J. Holyoak, A. Singh and Y. Baeyens, "A Fully Integrated 384-Element, 16-Tile, W -Band Phased Array With Self-Alignment and Self-Test," in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, Sept. 2019

A. A. Farid, A. S. H. Ahmed, A. Dhananjay and M. J. W. Rodwell, "A Fully Packaged 135-GHz Multiuser MIMO Transmitter Array Tile for Wireless Communications," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 7, July 2022 T. Li, K. Schneider, A. Haag, A. Visweswaran, A. Bhutani and T. Zwick, "Design of Wideband Dielectric Resonator Antenna for D-Band Applications," 2021 International Symposium on Antennas and Propagation (ISAP), 2021

D-Band AiP Solutions – 2/2

Mold-Embedding based AiP

F. Ahmed, M. Furqan and A. Stelzer, "120-GHz and 240-GHz Broadband Bow-Tie Antennas in eWLB Package for High Resolution Radar Applications," 2018 48th European Microwave Conference (EuMC), 2018

Glass Panel Embedding based AiP

S. Erdogan, S. Ravichandran, X. Jia and M. Swaminathan, "Characterization of Chip-to-Package Interconnects for Glass Panel Embedding (GPE) for Sub-THz Wireless Communications," 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), 2021

Fraunhofer IZM Embedding based AiP Solutions for Applications above 100 GHz

Embedding based AiP using Mold (FoWLP) and PCB Technologies

Example: 6G Sub-THz Module using IZM's Mold-Embedding based AiP – 1/4 BMBF Project 6GKOM

- Investigation and development of an ultra-broadband, miniaturized, massive MIMO D-band hardware module with integrated beamforming for 6G
- Application of Fraunhofer IZM's mold embedding-based AiP for development of front-end module with integrated antennas

Technische Universität Berlin	TECHNISCHE UNIVERSITÄT DRESDEN	A DELTA DE	6p	Fraunhofer			
Prof. Dr. G. Caire	Prof. Dr. G. Fettweis	Prof. Dr. D. Kissinger	Prof. Dr. E. Grass	Prof. Dr. Dr. I. Ndip			
	Competences and Focus						
Information theory and signal processing for mobile communication systems	Signal processing and hardware development for mobile communication systems	Frontend chip design for mmWave and THz systems	Localization, chip development and manufacturing for mmWave and THz systems	Advanced packaging and system integration, reliability, RF system design, signal integrity and antenna design for mmWave and THz systems			

Example: 6G Sub-THz Module using IZM's Mold-Embedding based AiP – 2/4 BMBF Project 6GKOM: RF Measurement and Characterization of Packaging Materials

Example: ISOLA ASTRA MT77

Frequency (GHz)	70	80	90	100	110	120	130	140
DK	2.94	2.92	2.90	2.89	2.87	2.85	2.84	2.82
DF (10 ⁻³)	4.8	4.9	5.1	5.2	5.4	5.5	5.7	5.8

6GKom (01.10.2019 - 31.11.2024)

für Bilduna

Example: 6G Sub-THz Module using IZM's Mold-Embedding based AiP – 4/4

BMBF Project 6GKOM: Design and Test of Antennas

IZM

Bandwidth

Uwe Maaß Dept. RF & Smart Sensor Systems Email: uwe.maass@izm.fraunhofer.de

+49 351 795572-12

Fraunhofer IZM Berlin

Gustav-Meyer-Allee 25 13355 Berlin Germany +49 30 46403-100

Fraunhofer IZM Fraunhofer Institute for Reliability and Microintegration IZM Fraunhofer IZM-ASSID Fraunhofer IZM Außenstelle Cottbus Ringstraße 12 Karl-Marx-Straße 69 01468 Dresden-Moritzburg 03044 Cottbus Germany Germany

+49 355 383 770-12

A sub-THz CMOS Transceiver IC and system for Medium-Reach Guided Wave and Short-Reach Wireless Communication Links

> Gerd Schuppener, Juan Herbsommer, Bradley Kramer¹, Hassan Ali, Robert Payne, Nirmal Warke², Carole Rush, Baher Haroun, and <u>Swami Sankaran</u>

sub-THz/mmWave Interconnect Vision

sub-THz Interconnect Tradeoffs

- Sub-THz/mmW TX, RX co-packaged or co-integrated with Baseband
- Guided-Wave Launch/OTA Antenna array embedded in package substrate
- <u>RF carrier frequency selection</u> Trade-off between:
 - Net bandwidth (for given % occupancy) and IC process f_{MAX} limit
 - Cost/Packaged chip size λ Determines Launch, Antenna dimensions
 - DWG diameter Critical in conduit area/Gbps constrained applications

"Plastic" Dielectric Wave-Guide

- Works on "Total-Internal-Reflection" (TIR) principle, similar to optical fibers
- Material (Plastic) + Use of standard extrusion
 → Potential for Low-cost
- Material composition \rightarrow Mechanically flexible

Measured Loss (WR5 - 140GHz)

Core	Cladding	Ø (mm)	α (dB/mm)
PE	PP	3	6.7
PE	PP	1	3.7
COMPOSITE -A	PP	3	9.3
	PP	2	4.7
COMPOSITE- B	PP	3	17.5
	PP	2	8.46

140-GHz System Block Diagram

- ICs: 65-nm CMOS, ~6mm²; Package: 6L, FCCSP
- <u>High-Speed I/Q interface</u>: Ground-referenced LVDS

Package-embedded Launch/2×2 Antenna Array

Wireless (OTA), Guided-Wave demonstration

Interface	Data-Rate	BER	Distance	DWG	
ΟΤΑ	10.8Gbps	<1.6×10 ⁻¹¹	25.4mm		
	10.8Gbps	2.1×10 ⁻¹⁵	1m	ті	
DWG	16Gbps	9.3×10 ⁻¹²	1m	11	
	10.3Gbps	<1×10 ⁻¹⁴	4m	External	
f _{carrier} = 140GHz; P _{DC} =700mW; Energy η (@ 4m): 17pJ/bit/m					

